Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Public Health Manag Pract ; 30(3): E94-E101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603759

RESUMO

CONTEXT: Home-based asthma interventions have a significant evidence base as an effective means to address moderate and severe breathing concerns triggered by home conditions. However, the literature lacks logistical and staffing considerations necessary to successfully implement such a program at a governmental level. This practice report and process evaluation outlines practical details and lessons learned during a healthy homes pilot, and how they were addressed in the design of a permanent program. OBJECTIVE: To inform the creation of a permanent home-based asthma intervention at the Alexandria Health Department (AHD) (City of Alexandria, Virginia) and understand the tools and resources necessary for success. INTERVENTION: Participating households received a health and environmental assessment, followed by cleaning supplies, relevant education, and referrals to partners for services. AHD staff tracked challenges and insights at each step of the intervention. At the end of the pilot, staff worked with the community to identify solutions and design a permanent program. CONCLUSIONS: Although the pilot model was constructed based on existing case studies, technical assistance from national experts, and guidance documents, the team still experienced challenges around recruitment, staff support, home visit implementation, and impact evaluation. While pilots and existing literature can be instructive for identifying issues, work with residents and partners to develop a uniquely tailored community program was essential for practical success. IMPLICATIONS ON POLICY AND PRACTICE: Health departments developing new initiatives should consider both the staff and participant experience throughout the creation of administrative and programmatic processes. Testing out draft versions of these processes and materials using internal and external focus groups can identify potential bottlenecks and solutions upfront.


Assuntos
Asma , Humanos , Asma/terapia , Virginia
2.
Clim Risk Manag ; 43: 1-18, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38515638

RESUMO

The interplay of contaminated sites, climate change, and disadvantaged communities are a growing concern worldwide. Worsening extreme events may result in accidental contaminant releases from sites and waste facilities that may impact nearby communities. If such communities are already suffering from environmental, economic, health, or social burdens, they may face disproportionate impacts. Equitable resilience planning to address effects of extreme events requires information on where the impacts may be, when they may occur, and who might be impacted. Because resources are often scarce for these communities, conducting detailed modeling may be cost-prohibitive. By considering indicators for four sources of vulnerability (changing extreme heat conditions, contaminated sites, contaminant transport via wind, and population sensitivities) in one holistic framework, we provide a scientifically robust approach that can assist planners with prioritizing resources and actions. These indicators can serve as screening measures to identify communities that may be impacted most and isolate the reasons for these impacts. Through a transdisciplinary case study conducted in Maricopa County (Arizona, USA), we demonstrate how the framework and geospatial indicators can be applied to inform plans for preparedness, response, and recovery from the effects of extreme heat on contaminated sites and nearby populations. The indicators employed in this demonstration can be applied to other locations with contaminated sites to build community resilience to future climate impacts.

3.
J Asthma ; 60(12): 2243-2247, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37427873

RESUMO

INTRODUCTION: Refractory status asthmaticus (RSA) is a severe, life-threatening form of asthma exacerbation that persists despite aggressive treatment with systemic corticosteroids, bronchodilators, and other supportive measures. Omalizumab, a monoclonal antibody that targets IgE, has been approved for treating severe allergic asthma and is effective in reducing the frequency of exacerbations and improving asthma control. Limited evidence exists regarding the use of Omalizumab in RSA, but some studies have suggested that it may have a role in its management. CASE: A 39-year-old male with a decade-long history of asthma presented to the emergency department intubated and unresponsive to pharmacological therapy. The patient's IgE levels were elevated, and Omalizumab was administered after a comprehensive evaluation. The patient made a dramatic recovery and was successfully weaned off the ventilator within 24 h of receiving Omalizumab. He made an uneventful recovery and was discharged home on Omalizumab once every two weeks with regular follow-ups. DISCUSSION AND CONCLUSION: Per our literature search, only 3 cases have been reported where Omalizumab was administered to patients with RSA to wean them off ventilatory support successfully. This case study adds to the existing data on the potential benefits of Omalizumab in managing RSA. It suggests it may be a valuable treatment option for patients who do not respond to standard therapy. However, further research is needed to determine the efficacy and safety of Omalizumab in this population.


Assuntos
Antiasmáticos , Asma , Estado Asmático , Masculino , Humanos , Adulto , Omalizumab/uso terapêutico , Estado Asmático/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoglobulina E , Resultado do Tratamento
4.
Respirol Case Rep ; 9(6): e00754, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33976883

RESUMO

Massive (or life-threatening) haemoptysis is a time-sensitive emergency encountered by a physician that requires an interdisciplinary, collaborative effort to arrest the bleeding in a prompt and timely manner. Placement of an endobronchial Watanabe spigot (EWS) to halt haemoptysis is a relatively recent technique finding its wide application in airway pathology, with the current extension of its use to bronchial bleeding. However, the lack of immediate access to EWS gives rise to the need to innovate with day-to-day materials used in routine surgical practice and available in resource-limited settings, which may serve the purpose of a spigot. In this report, we bring to light a case of life-threatening, cryptogenic haemoptysis that was managed by a novel technique of using peanut gauze as a spigot resulting in a successful endobronchial tamponade.

5.
Indian J Thorac Cardiovasc Surg ; 37(Suppl 2): 309-318, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33487891

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a lifesaving technology in critically ill patients who present with cardiac/pulmonary/combined cardiopulmonary failure. These patients are the sickest of all patients in any critical care unit and will invariably have a prolonged course and rehabilitation. Spontaneous breathing and early mobilization can reduce the intensive care unit (ICU)-acquired weakness, improve functional recovery, and reduce superadded infections and length of stay in the hospital, thus decreasing the cost of treatment. In low socioeconomic countries, there is an associated challenge of the availability of specially trained personnel necessary to manage patients on ECMO. Managing and ambulating an awake patient on ECMO is very labour-intensive and poses various challenges. Every ECMO program should aim to develop goals, methods, and protocols to this end. These can be derived from best practices worldwide by suitably adapting to available personnel and equipment. In this review, we aim to highlight the advantages and associated challenges of awake ECMO and describe protocols to aid safe ambulation and physiotherapy for ECMO patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12055-020-01075-z.

6.
Environ Res ; 178: 108687, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479977

RESUMO

Health impacts of surface ozone (O3) and fine particulate matter (PM2.5) are of major concern worldwide. In this work, the Environmental Benefits Mapping and Analysis Program tool is applied to estimate the health and economic impacts of projected changes in O3 and PM2.5 in the U.S. in future (2046-2055) decade relative to current (2001-2010) decade under the Representative Concentration Pathway (RCP) 4.5 and 8.5 climate scenarios. Future annual-mean O3 reductions under RCP 4.5 prevent ~1,800 all-cause mortality, 761 respiratory hospital admissions (HA), and ~1.2 million school loss days annually, and result in economic benefits of ~16 billion, 29 million, and 132 million U.S. dollars (USD), respectively. By contrast, the projected future annual-mean O3 increases under RCP8.5 cause ~2,400 mortality, 941 respiratory HA, and ~1.6 million school loss days annually and result in economic disbenefits of ~21 billion, 36 million, and 175 million USD, respectively. Health benefits of reduced O3 double under RCP4.5 and health dis-benefits of increased O3 increase by 1.5 times under RCP8.5 in future with 2050 population and baseline incidence rate. Because of the reduction in projected future PM2.5 over CONUS under both scenarios, the annual avoided all-cause deaths, cardiovascular HA, respiratory HA, and work loss days are ~63,000 and ~83,000, ~5,300 and ~7,000, ~12,000 and ~15,000, and ~7.8 million and ~10 million, respectively, leading to economic benefits of ~560 and ~740 billion, ~240 and ~320 million, ~450 and ~590 million, and ~1,400 and ~1,900 million USD for RCP4.5 and 8.5, respectively. Health benefits of reduced PM2.5 for future almost double under both scenarios with the largest benefits in urban areas. RCP8.5 projects larger health and economic benefits due to a greater reduction in PM2.5 but with a warmer atmosphere and higher O3 pollution than RCP4.5. RCP4.5 leads to multiple-benefit goals including reduced O3 and PM2.5, reduced mortality and morbidity, and saved costs. Greater reduction in future PM2.5 under RCP4.5 should be considered to achieve larger multi-benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Ozônio , Material Particulado , Clima , Análise Custo-Benefício
7.
Ecol Appl ; 28(4): 978-1002, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29714821

RESUMO

Atmospheric deposition of nitrogen (N) and sulfur (S) has increased dramatically over pre-industrial levels, with many potential impacts on terrestrial and aquatic ecosystems. Quantitative thresholds, termed "critical loads" (CLs), have been developed to estimate the deposition rate above which damage is thought to occur. However, there remains no comprehensive comparison of when, where, and over what time periods individual CLs have been exceeded. We addressed this knowledge gap by combining several published data sources for historical and contemporary deposition, and overlaying these on six CL types from the National Critical Loads Database (NCLDv2.5; terrestrial acidification, aquatic acidification, lichen, nitrate leaching, plant community composition, and forest-tree health) to examine exceedances from 1800 to 2011. We expressed CLs as the minimum, 10th, and 50th percentiles within 12-km grid cells. Minimum CLs were relatively uniform across the country (200-400 eq·ha-1 ·yr-1 ), and have been exceeded for decades beginning in the early 20th century. The area exceeding minimum CLs peaked in the 1970s and 1980s, exposing 300,000 to 3 million km2 (depending on the CL type) to harmful levels of deposition, with a total area exceeded of 5.8 million km2 (~70% of the conterminous United States). Since then, deposition levels have dropped, especially for S, with modest reductions in exceedance by 2011 for all CL types, totaling 5.2 million km2 in exceedance. The 10th and 50th percentile CLs followed similar trends, but were not consistently available at the 12-km grid scale. We also examined near-term future deposition and exceedances in 2025 under current air quality regulations, and under various scenarios of climate change and additional nitrogen management controls. Current regulations were projected to reduce exceedances of any CL from 5.2 million km2 in 2011 to 4.8 million km2 in 2025. None of the additional N management or climate scenarios significantly affected areal exceedances, although exceedance severity declined. In total, it is clear that many CLs have been exceeded for decades, and are likely to remain so in the short term under current policies. Additionally, we suggest many areas for improvement to enhance our understanding of deposition and its effects to support informed decision making.


Assuntos
Poluição do Ar/história , Ciclo do Nitrogênio , Óxidos de Enxofre , Amônia , História do Século XIX , História do Século XX , História do Século XXI , Óxidos de Nitrogênio , Estados Unidos
9.
J Air Waste Manag Assoc ; 67(11): 1213-1228, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28379117

RESUMO

Black carbon (BC) or elemental carbon (EC) is a by-product of incomplete fuel combustion, and contributes adversely to human health, visibility, and climate impacts. Previous studies have examined nondestructive techniques for particle light attenuation measurements on Teflon® filters to estimate BC. The incorporation of an inline Magee Scientific OT21 transmissometer into the MTL AH-225 robotic weighing system provides the opportunity to perform optical transmission measurements on Teflon filters at the same time as the gravimetric mass measurement. In this study, we characterize the performance of the inline OT21, and apply it to determine the mass absorption cross-section (MAC) of PM2.5 BC across the United States. We analyzed 5393 archived Teflon® filters from the Chemical Speciation Network (CSN) collected during 2010-2011 and determined MAC by comparing light attenuation on Teflon® filters to corresponding thermal EC on quartz-fiber filters. Results demonstrated the importance of the initial transmission (I0) value used in light attenuation calculations. While light transmission varied greatly within filter lots, the average I0 of filter blanks during the sampling period provided an estimate for archived filters. For newly collected samples, it is recommended that filter-specific I0 measurements be made (i.e., same filter before sample collection). The estimated MAC ranged from 6.9 to 9.4 m2/g and varied by region and season across the United States, indicating that using a default value may lead to under- or overestimated BC concentrations. An analysis of the chemical composition of these samples indicated good correlation with EC for samples with higher EC content as a fraction of total PM2.5 mass, while the presence of light-scattering species such as crustal elements impacted the correlation affecting the MAC estimate. Overall, the method is demonstrated to be a quick, cost-effective approach to estimate BC from archived and newly sampled Teflon® filters by combining both gravimetric and BC measurements. IMPLICATIONS: Robotic optical analysis is a valid, cost-effective means to obtain a vast amount of BC data from archived and current routine filters. A tailored mass absorption cross-section by region and season is necessary for a more representative estimate of BC. Initial light transmission measurements play an important role due to the variability in blank filter transmission. Combining gravimetric mass and BC analysis on a single Teflon® filter reduces costs for monitoring agencies and maximizes data collection.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental/métodos , Politetrafluoretileno , Fuligem/análise , Poluentes Atmosféricos/química , Carbono/química , Monitoramento Ambiental/instrumentação , Humanos , Estações do Ano , Fuligem/química
10.
J Air Waste Manag Assoc ; 60(11): 1293-308, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21141423

RESUMO

This study presents an assessment of the performance of the Community Multiscale Air Quality (CMAQ) photochemical model in forecasting daily PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter) mass concentrations over most of the eastern United States for a 2-yr period from June 14, 2006 to June 13, 2008. Model predictions were compared with filter-based and continuous measurements of PM2.5 mass and species on a seasonal and regional basis. Results indicate an underprediction of PM2.5 mass in spring and summer, resulting from under-predictions in sulfate and total carbon concentrations. During winter, the model overpredicted mass concentrations, mostly at the urban sites in the northeastern United States because of overpredictions in unspeciated PM2.5 (suggesting possible overestimation of primary emissions) and sulfate. A comparison of observed and predicted diurnal profiles of PM2.5 mass at five sites in the domain showed significant discrepancies. Sulfate diurnal profiles agreed in shape across three sites in the southern portion of the domain but differed at two sites in the northern portion of the domain. Predicted organic carbon (OC) profiles were similar in shape to mass, suggesting that discrepancies in mass profiles probably resulted from the underprediction in OC. The diurnal profiles at a highly urbanized site in New York City suggested that the overpredictions at that site might be resulting from overpredictions during the morning and evening hours, displayed as sharp peaks in predicted profiles. An examination of the predicted planetary boundary layer (PBL) heights also showed possible issues in the modeling of PBL.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Ritmo Circadiano , Interpretação Estatística de Dados , Bases de Dados Factuais , Monitoramento Ambiental , Previsões , Modelos Teóricos , Tamanho da Partícula , Estudos Retrospectivos , Estações do Ano
11.
J Air Waste Manag Assoc ; 58(2): 141-63, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18318335

RESUMO

Recent improvements in integrated and continuous PM2.5 mass and chemical measurements from the Supersite program and related studies in the past decade are summarized. Analytical capabilities of the measurement methods, including accuracy, precision, interferences, minimum detectable levels, comparability, and data completeness are documented. Upstream denuders followed by filter packs in integrated samplers allow an estimation of sampling artifacts. Efforts are needed to: (1) address positive and negative artifacts for organic carbon (OC), and (2) develop carbon standards to better separate organic versus elemental carbon (EC) under different temperature settings and analysis atmospheres. Advances in thermal desorption followed by gas chromatography/ mass spectrometry (GC/MS) provide organic speciation of approximately 130 nonpolar compounds (e.g., n-alkanes, alkenes, hopanes, steranes, and polycyclic aromatic hydrocarbons [PAHs]) using small portions of filters from existing integrated samples. Speciation of water-soluble OC (WSOC) using ion chromatography (IC)-based instruments can replace labor-intensive solvent extraction for many compounds used as source markers. Thermal gas-based continuous nitrate and sulfate measurements underestimate filter ions by 10-50% and require calibration against on-site filter-based measurements. IC-based instruments provide multiple ions and report comparable (+/-10%) results to filter-based measurements. Maintaining a greater than 80% data capture rate in continuous instruments is labor intensive and requires experienced operators. Several instruments quantify black carbon (BC) by optical or photoacoustic methods, or EC by thermal methods. A few instruments provide real-time OC, EC, and organic speciation. BC and EC concentrations from continuous instruments are highly correlated but the concentrations differ by a factor of two or more. Site- and season-specific mass absorption efficiencies are needed to convert light absorption to BC. Particle mass spectrometers, although semiquantitative, provide much information on particle size and composition related to formation, growth, and characteristics over short averaging times. Efforts are made to quantify mass by collocating with other particle sizing instruments. Common parameters should be identified and consistent approaches are needed to establish comparability among measurements.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Elementos Químicos , Monitoramento Ambiental , Filtração , Compostos Orgânicos/análise , Tamanho da Partícula , Água/análise
12.
J Air Waste Manag Assoc ; 58(2): 265-88, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18318341

RESUMO

Receptor models are used to identify and quantify source contributions to particulate matter and volatile organic compounds based on measurements of many chemical components at receptor sites. These components are selected based on their consistent appearance in some source types and their absence in others. UNMIX, positive matrix factorization (PMF), and effective variance are different solutions to the chemical mass balance (CMB) receptor model equations and are implemented on available software. In their more general form, the CMB equations allow spatial, temporal, transport, and particle size profiles to be combined with chemical source profiles for improved source resolution. Although UNMIX and PMF do not use source profiles explicitly as input data, they still require measured profiles to justify their derived source factors. The U.S. Supersites Program provided advanced datasets to apply these CMB solutions in different urban areas. Still lacking are better characterization of source emissions, new methods to estimate profile changes between source and receptor, and systematic sensitivity tests of deviations from receptor model assumptions.


Assuntos
Poluição do Ar/estatística & dados numéricos , Recuperação e Remediação Ambiental , Algoritmos , Modelos Teóricos , Estados Unidos , United States Environmental Protection Agency
13.
Environ Monit Assess ; 144(1-3): 179-89, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17929182

RESUMO

PM(2.5) nitrate (NO-(3)) and sulfate (SO=(4)) were measured continuously with R&P8400N and R&P8400S instruments, respectively, and compared with filter-based measurements at the Fresno Supersite from October, 2000 through December, 2005. NO-(3) concentrations were higher in winter than summer with a long-term decreasing trend. Correlations between 24-h average continuous and filter-based NO-(3) were greater than 0.96 in 4 out of 5 years. Continuous NO-(3) was generally lower than filter-based NO-(3) although the difference decreased over time, from -52% in 2001 to +13% in 2005. These differences were similar in winter (-23%) and summer (-19%) while the corresponding differences between ambient and instrument temperature were -12 and 0.7 degrees C, respectively. Neither seasonal nor long-term trends in NO-(3) can be explained by variations in ambient temperature, the difference between ambient and instrument temperature, or changes in aerosol chemical composition. There were no seasonal or long-term trends in SO=(4) concentrations, partially due to low concentrations observed in Fresno. Long-term variability in the performance of R&P8400 NO-(3) and SO=(4) instruments suggest that collocation with filter measurements is needed for long-term measurements.


Assuntos
Poluentes Atmosféricos/análise , Nitratos/análise , Material Particulado/análise , Sulfatos/análise , Aerossóis/química , Poluição do Ar , Monitoramento Ambiental , Filtração , Humanos , Tamanho da Partícula , Estações do Ano , Gerenciamento de Resíduos
14.
J Air Waste Manag Assoc ; 57(4): 407-19, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17458460

RESUMO

Source apportionment of fine particles (PM2.5, particulate matter < 2 microm in aerodynamic diameter) is important to identify the source categories that are responsible for the concentrations observed at a particular receptor. Although receptor models have been used to do source apportionment, they do not fully take into account the chemical reactions (including photochemical reactions) involved in the formation of secondary fine particles. Secondary fine particles are formed from photochemical and other reactions involving precursor gases, such as sulfur dioxide, oxides of nitrogen, ammonia, and volatile organic compounds. This paper presents the results of modeling work aimed at developing a source apportionment of primary and secondary PM2.5. On-road mobile source and point source inventories for the state of Tennessee were estimated and compiled. The national emissions inventory for the year 1999 was used for the other states. U.S. Environmental Protection Agency Models3/Community Multi-Scale Air Quality modeling system was used for the photochemical/secondary particulate matter modeling. The modeling domain consisted of a nested 36-12-4-km domain. The 4-km domain covered the entire state of Tennessee. The episode chosen for the modeling runs was August 29 to September 9, 1999. This paper presents the approach used and the results from the modeling and attempts to quantify the contribution of major source categories, such as the on-road mobile sources (including the fugitive dust component) and coal-fired power plants, to observed PM2.5 concentrations in Tennessee. The results of this work will be helpful in policy issues targeted at designing control strategies to meet the PM2.5 National Ambient Air Quality Standards in Tennessee.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Emissões de Veículos/análise , Carvão Mineral , Poeira , Humanos , Modelos Teóricos , Tamanho da Partícula , Fotoquímica , Centrais Elétricas , Estações do Ano , Tennessee , Estados Unidos , United States Environmental Protection Agency , Vento
15.
J Air Waste Manag Assoc ; 56(4): 474-91, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16681212

RESUMO

Results from six continuous and semicontinuous black carbon (BC) and elemental carbon (EC) measurement methods are compared for ambient samples collected from December 2003 through November 2004 at the Fresno Supersite in California. Instruments included a multi-angle absorption photometer (MAAP; lambda = 670 nm); a dual-wavelength (lambda = 370 and 880 nm) aethalometer; seven-color (lambda = 370, 470, 520, 590, 660, 880, and 950 nm) aethalometers; the Sunset Laboratory carbon aerosol analysis field instrument; a photoacoustic light absorption analyzer (lambda = 1047 nm); and the R&P 5400 ambient carbon particulate monitor. All of these acquired BC or EC measurements over periods of 1 min to 1 hr. Twenty-four-hour integrated filter samples were also acquired and analyzed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance carbon analysis protocol. Site-specific mass absorption efficiencies estimated by comparing light absorption with IMPROVE EC concentrations were 5.5 m2/g for the MAAP, 10 m2/g for the aethalometer at a wavelength of 880 nm, and 2.3 m2/g for the photoacoustic analyzer; these differed from the default efficiencies of 6.5, 16.6, and 5 m2/g, respectively. Scaling absorption by inverse wavelength did not provide equivalent light absorption coefficients among the instruments for the Fresno aerosol measurements. Ratios of light absorption at 370 nm to those at 880 nm from the aethalometer were nearly twice as high in winter as in summer. This is consistent with wintertime contributions from vehicle exhaust and from residential wood combustion, which is believed to absorb more shorter-wavelength light. To reconcile BC and EC measurements obtained by different methods, a better understanding is needed of the wavelength dependence of light-absorption and mass-absorption efficiencies and how they vary with different aerosol composition.


Assuntos
Poluentes Ocupacionais do Ar/análise , Carbono/análise , Monitoramento Ambiental/métodos , Filtração , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...